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Heavy metal pollution is one of the main factors of the traffic pollution. The 
public authorities have been monitoring the concentration of heavy metal by 
means of sampling stations. This paper describes the response surface 
models and an intelligent regression algorithm, multivariate adaptive 
regression splines (MARS) models to data collected from soil at the stations 
where there were high density of buildings, roads, traffic and tramways. The 
model variables included the number of car and tramways and the 
concentration levels of Cadmium (Cd), Zinc (Zn) and Lead (Pb), at depth of 0-
100mm. The objective of this study was to apply MARS to analyze the model 
output when there are a few numbers of design points. Several MARS models 
developed to simulate the concentration of each heavy metal. The 
performance of MARS was compared to that of response surface 
methodology (RSM) using 1st and 2nd order response surface models with 
respect to the accuracy metrics; root mean square error and adjusted R2. The 
results showed that MARS models were successful in goodness of fit, suitable 
and also reliable as compared to the RSM models. Additionally, use of MARS 
in selection of the variables indicating great contribution on the response 
was effective. 
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1. Introduction 

*With the continuous increase in industrial 
development, heavy metal contamination has posed 
a serious threat for the environment. Elevated 
concentrations in air, water, and soil may occur close 
to industrial emission sources, particularly 
nonferrous mining and metal refining industries. 
Human activities, such as the atmospheric deposition 
of industrial soot, dust and aerosols, and coal 
burning exhausts, the application of fertilizers, 
livestock manures, and agrochemicals, and the 
disposal of anthropic wastes were the main sources 
of Cd, Pb and Zn. Increasing deposition of heavy 
metals on land and air has given a considerable 
concern about its impact on human health by the 
society to provide a sustainable environment. In 
recent years, various ways of approaching the 
distribution of pollution were analyzed by the 
scientists. Silva et al. (2001) studied on the main 
factors of air pollution in Santiago, Chile. They 
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modelled and predicted the atmospheric pollution 
using the meteorological variables by means of 
MARS and non-parametric discriminant analysis. 
Gruszczynski (2005) examined the soil spatial 
distribution pollution of Chromium (Cr) where 
pollution by this element was high using 
interpolation algorithms and artificial neural 
networks. Covelo et al. (2008) examined the tree 
fitted regression models on the data containing six 
heavy metal. The sorption and retention of mixtures 
of heavy metals was reproduced by binary decision-
tree regression models using classification and 
regression trees (CART) algorithm by an 
accompanying paper of Vega et al. (2009). Cheng et 
al. (2009) presented a case study in assessment of 
the distribution of soil Zinc (Zn) in an area severely 
polluted. Nieto et al. (2012) improved his work 
about cyanotoxins, a kind of poisonous substances 
produced by cyanobacteria, prediction from some 
experimental cyanobacteria concentrations in the 
Trasona reservoir (Asturias, Northern Spain) using 
(MARS). Piedade et al. (2014) applied a new 
approach of visualization based on tridimensional 
images of lead (Pb) concentrations in soil of a mining 
and metallurgy area to determine the spatial 
distribution of this pollutant and to estimate the 
most contaminated volumes. Lee and Toscas (2015) 
estimated the spatial distribution of the lead 
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concentration levels that may affect exposed humans 
by using penalized regression and tensor product 
smooths.  

In keeping with the above, the contaminated soil 
was also investigated by different statistical methods 
as well. Long et al. (2013) used response surface 
methodology (RSM) based on Box-Behnken 
experimental design for the analysis of variables of 
surfactant flushing treatment to optimize toluene 
removal efficiency from contaminated soil. Martínez-
Fernández et al. (2014) studied response surface 
methodology to develop predictive models from 
central composite designs. Zhu et al. (2015) studied 
confirmed the use of Box-Behnken experimental 
design for analyzing the variables of ultrasound-
assisted surfactant extraction treatment.  

Different from conventional models, Govaerts 
and Noel (2005) discussed the analysis of a designed 
experiment when the response was a curve using 
three different approaches: two-step nonlinear 
modeling, pointwise functional regression and 
smoothed functional regression. 

Developed in 1990 by Friedman, MARS is an 
intelligent, flexible, fast and accurate in prediction 
for various types of variables. Many applications 
have shown the successful prediction of MARS; Chun 
et al. (2003) showed the performance of MARS for 
simulating the pesticide transport in soils and 
confirmed that it can simulate complex phenomena 
in a simple and straightforward way rather than 
artificial neural networks. Woods and Lewis (2006) 
gave a method for constructing all-biased designs for 
polynomial spline regression models. Crino and 
Brown (2007) combined MARS with a response 
surface methodology. In his study, MARS showed 
low computational cost and better interpretability 
when compared to neural networks and generalized 
additive models. 

Since 1990’s, the successful applications of MARS 
were appeared in several field of studies (Crino and 
Brown, 2007). The primary objective of this study 
was to apply MARS to simulate the concentrations of 
three heavy metal at soil depth of 0-100mm. Several 
MARS models with interaction terms were 
developed and compared to the results obtained by 
1st and 2nd order response surface models. 
Importance sequence of input variables to each 
heavy metal was determined respectively. The 
performance of MARS models was compared to the 
response surface models with respect to root mean 
squared error (RMSE), number of variables, number 
of observations, and the adjusted determination 
coefficient (𝑅𝑎𝑑𝑗

2 ).  

2. Materials and methodology 

2.1. Model description 

RSM comprises a group of statistical techniques 
for empirical model building and model exploitation 
(Box and Draper, 2007). In this study, it is assumed 
that some true physical relationships between the 

expectation of the response y and two factors (𝜉1 and 
𝜉2) and via physical constants 𝜆 exist as follows (Eq. 
1):  

 
𝐸(𝑦) = 𝑓(𝜉1, 𝜉2, 𝜆)                                                                (1) 

 
The nature of the expectation function in E(y) is 

unknown and it is replaced by an approximating 
function as either of the following (Eqs. 1 and 2):  

 
𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖 + 𝜀𝑘

𝑖=1                                                          (2) 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝑘

𝑖=1
+ ∑ 𝛽𝑖𝑖𝑋𝑖

2
𝑘

𝑖=1
+ 

∑ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗 + 𝜀𝑘
𝑗=1
1<𝑗

𝑘−1
𝑖=1                           (3) 

 
where, 𝑋𝑖 = 𝑓(𝜉1, 𝜉2) is a linear coding of a factor 𝜉𝑖 , 
i=1, 2 (Box and Draper, 2007). The response is y and 
𝑋1, , 𝑋2, . . . , 𝑋𝑘 are k known explanatory variables. 𝑋𝑖

2 
is a higher-order term and 𝑋𝑖𝑋𝑗  is the interaction 

term for i=1, ..., k-1, j=1, ..., k. 𝛽0, 𝛽1, … , 𝛽𝑘 , 𝛽11, … , 𝛽𝑘𝑘  
are unknown parameters and 𝜀 is a random error 
(Khuri and Cornell, 1987). The response is modeled 
by a linear function or the model is upgraded by 
adding higher-order terms if there is a curvature in 
the system. 

In order to build a MARS model, a response and a 
set of exploratory variables are required. MARS 
splits the data into several splines and approximates 
the regression model using basis functions (BFs) as 
follows (Eq. 4): 

 
𝑦 = 𝛽0 + ∑ 𝛽𝑚ℎ𝑚(𝑿)𝑀

𝑚=1                                                      (4) 
 
where, ℎ𝑚(𝑿)is BF that represents the data in each 
subgroup. 𝛽0, … , 𝛽𝑀  are unknown parameters, i=1, …, 
M, that are estimated by ordinary least squares 
method once BFs are investigated. BFs can be 
represented by (Eq. 5): 
 
ℎ𝑚(𝑿) = ∏ [𝑆𝑘,𝑚(𝑋𝑉(𝑘,𝑚) − 𝑡𝑘,𝑚)]+

𝑞𝐾𝑚
𝑘=1                               (5) 

 
where, “+” means the argument is a truncated power 
function, 𝐾𝑚is the number of variables (interaction 
order) in the mth basis expansion. 𝑋𝑉(𝑘,𝑚) is the vth 

variable, 1 ≤  𝑉(𝑘, 𝑚) ≤ 𝑛. 𝑡𝑘,𝑚  is a knot on each of 

the corresponding variable where the two BFs in two 
adjacent domains of data intersect? Therefore, MARS 
creates knots which can be located among different 
exploratory variables. The BF represents the 
relationship between the knots using the reflected 
pairs of hockey stick function as follows (Eq. 6): 
 
𝑓(𝑋𝑖) = max(0, 𝑋 − 𝑡)  

𝑓(𝑋𝑖) = max(0, 𝑡 − 𝑋)                                                       (6) 
 
Where, 𝑓(𝑋𝑖) is a new variable with values 0 for all 
values X up to some threshold t whereas 𝑓(𝑋𝑖) is 
equal to x for all values of x larger than the threshold 
value. The second pair of hockey stick function 
generates a reflected effect of the first one and 
illustrates the variation in BFs for changes of t values 
for variable X. Thus, t denotes the knot where the 
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behavior of the function changes. Each BF is unique 
between any two knots and replaced by another BF 
at each knot (Abraham and Steinberg, 2001; 
Fridedman, 1991). Thus, a knot is located at the 
beginning of a region and the end of another. Finding 
the best knot is a search process in MARS. In each 
spline, the data is splitted in regions. The MARS 
model fits a regression line from region to region 
using splines whereas model’s response is 
continuous.  

MARS procedure adaptively selects the BF set by 
two iterative approaches: forward and backward 
selection. It uses the residual squared error in 
iterations to compare the partition points. 
Determination of knot locations is adaptive to data 
characteristics (Abraham and Steinberg, 2001; 
Fridedman, 1991). The criterion used to set the final 
model is a modified generalized cross validation 
(GCV) of the first proposed one by Craven and 
Wahba (1978) (Eq. 7).  

 

𝐺𝐶𝑉 =
1

𝑁
∑ [𝑦𝑖 − 𝑓𝑀(𝑿)]

2
[1 −

𝐶(𝑀)

𝑁
]

2

⁄𝑁
𝑖=1                            (7) 

 
MARS generates and compares the models in 

terms of the importance of the inputs in the models 
using ANOVA. Analysis of variance decomposition of 
the MARS model is given by the following expression 
(Fridedman, 1991) (Eq. 8):  

 

𝑦 = 𝛽0 + ∑ 𝑓𝑖(𝑋𝑖) + ∑ 𝑓𝑖𝑗(𝑋𝑖 , 𝑋𝑗) +  ∑ 𝑓𝑖𝑗𝑘(𝑋𝑖 , 𝑋𝑗 , 𝑋𝑘)

𝐵=3𝐵=2𝐵=1

 

+ ⋯                                            (8) 
 

where, ∑ 𝑓
𝑖
(𝑋𝑖)𝐵=1  is overall BFs involve only a single 

variable, ∑ 𝑓
𝑖𝑗

(𝑋𝑖, 𝑋𝑗)𝐵=2  is overall BFs represent the 

contribution from two variables, 
∑ 𝑓𝑖𝑗𝑘(𝑋𝑖 , 𝑋𝑗 , 𝑋𝑘) 𝐵=3 is overall BFs represent the 

contribution from three variables, and so on. The 
best (or final) MARS model is the one with the 
smallest GCV value and the largest 𝑅𝑎𝑑𝑗

2  value 

(Fridedman, 1991; Hastie et al. 2001). 

2.2. Data description 

The data used to develop 1st and 2nd order 
response models and MARS included the number of 
cars, the number of tramways, and the concentration 
measurements of three heavy metals that cause 
traffic pollution: Cd, Zn, Pb. Urban soils collected at 
locations where there were high density of buildings, 
roads and tramways in Eskisehir, Turkey. A 
systematic sampling was adopted to prove a 
sampling strategy over the entire workspace. Sample 
points within topsoil layers 0-10 cm were located 
roads alongside. Portions of the soil samples which 
were hold approximately 25gr were grounded in a 
mechanical agate grinder until fine particles 
(<200µm) were obtained. The coordinates of the 
sample locations were recorded with a GPS. All soil 
samples were dried for 3 h at 105oC (to a constant 
weight), milled and passed through a nylon sieve 
(0.5 mm). 0.5g samples were weighed and 
transferred into reaction vessels. The descriptive 
statistics of the heavy metals were presented in 
Table 1. 

Table 1: Heavy metal contents in soil samples of Eskişehir (µg/g) 

Response Minimum Maximum Mean Median 
Geometric 

Mean 
Standard 
Deviation 

Skewness Guideline 

Cd 0.60 3.39 1.28 1.19 1.23 0.45 2.86 3 a 
Zn 34.10 136.68 64.93 55.84 60.16 28.42 1.49 300 a 
Pb 7.92 101.12 31.50 21.93 24.24 23.57 1.15 300 a 

a Values recommended by Turkey Ministry of Environment and Forestry (2005) 

 
2.3. Method description 

In this study, the software SAS (version 9.0 for 
Windows) was applied to build the response surface 
models. A response surface statistical experimental 
design was used to optimize the concentration of Cd, 
Zn, and Pb separately. This design is based on a 32  
factorial design, five replicates of the experiment, 
leading to 45 observations at nine different sample 
stations investigated. To properly represent the 
heavy metal concentration, 1st and 2nd order 
response models were investigated.  

Thus six different models were developed in this 
part of the study. There were two inputs to the 
response models: the number of cars and the 
number of tramways. The levels of each input were 
chosen on the basis of the minimum and the 
maximum number of vehicles passing at chosen 
stations. Each level of the two factors was run in all 
combinations for Cd, Zn, and Pb. The levels of two 
factors coded as (-1), (0), and (+1) due to a 
computational ease are listed in Table 2.  

 
Table 2. Levels of factors for 32  factorial design 

Factors Symbol Levels 
  Low Medium High 

Tramway 𝑋1 12 (-1) 18 (0) 24 (+1) 
Car 𝑋2 174 (-1) 852 (0) 1530 (+1) 

 

In the second part of the study, the same input 
variables in Table 2 were used to develop MARS 
models. As one MARS model has only one response 
variable, the total number of MARS models in this 

study is three for the three outputs: Cd, Zn, and Pb. 
The MARS software, version 2.0 was used in the 
analysis (Salford Systems, 2010).  
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2.4. Motivation 

ANOVA decomposition of the MARS model 
captures the main idea of this study. The input 
variables 𝑋1 and 𝑋2 are considered as the main 
factors (variables) whereas 𝑋1

2 and 𝑋2
2 represent the 

squared effects in the model. Thus, a second order 
MARS model has been used so that the BFs of the 
final MARS model consist both linear and second-
order splines. Besides the interaction terms were 
also included in the model. The maximum number of 
interactions was set to 2. Higher order of interaction 
was not allowed as the number of experimental 
points was not enough in this study. Hence the 
interactions were controlled before and only 
interactions of  (𝑋1𝑋1), (𝑋1 𝑋2

2), (𝑋2 𝑋1
2)  and 

  (𝑋1
2 𝑋2

2) were taken into account. The same data 
collected from road were used to develop the MARS 
models. As there are three outputs of interest, three 
MARS models were simulated. The coded values of 
factors were used to provide orthogonality. Each 
model was assumed to describe the effect of the 
factors over the interest region (linear coding: -1, 
0,+1, quadratic coding: +1,-2,+1).  

3. Results 

3.1. The analysis of variance 

The quality of the fitted models was checked by 
F-test at 0.01 significance level. To make detailed 
information regarding to the structure of the 
variation in main and interaction effects, those were 
divided into linear and quadratic terms. The 
statistical insignificance of linear, quadratic and 
interaction terms were determined by using p-
value>0.01. Thus a p-value with ‘*, **, ***’ codes 
indicates the terms significant at the corresponding 
level. The results in Table 3 are satisfactory for a 
good prediction for the experiments carried out.  

In Table 3, the results suggested that the 2nd 
order model was considered to approximate the 
surface curvature’s nature better than 1st order 
response model with respect to RMSE for three 
outputs. 

The results from the canonical analysis of the 2nd 
order response model for each output were listed in 
Table 4. 

 
Table 3: Analysis of variance of calculated models for Cd, Zn, and Pb 

 Cd Zn Pb 
 MS F p-value MS F p-value MS F p-value 

𝑋1 0.024 3.879 0.029* 21277 3024.42 2.2e-16*** 4949.6 295.727 <2.2 e-16*** 
       𝑋1 0.037 6.035 0.019* 33285 4731.31 2.2e-16*** 681.6 40.727 2.15e-07*** 
       𝑋1

2 0.010 1.724 0.197 9269 1317.53 2.2e-16*** 9217.6 550.728 <2.2e-16*** 
𝑋2 0.244 39.586 8.1e-10*** 9184 1305.43 2.2e-16*** 4440.3 265.297 <2.2e-16*** 

       𝑋2 0.485 78.837 1.4e-10*** 1879 267.13 2.2e-16*** 6841.3 408.747 <2.2e-16*** 
       𝑋2

2 0.002 0.336 0.566 16488 2343.73 2.2e-16*** 2039.4 121.847 4.15e-13*** 
   𝑋1𝑋2 0.398 64.653 6.2e-16*** 2939 417.82 2.2e-16*** 1447.3 86.471 <2.2e-16*** 

           𝑋1𝑋2 0.120 19.508 8.8e-05*** 2926 415.86 2.2e-16*** 477.9 28.552 5.24e-06*** 
             𝑋1

2𝑋2 1.181 191.968 5.4e-16*** 1635 232.37 2.2e-16*** 4166.7 248.949 <2.2e-16*** 
            𝑋1𝑋2

2 0.002 0.2438 0.625 5965 847.84 2.2e-16*** 1144.6 68.385 7.66e-10*** 
            𝑋1

2𝑋2
2 0.289 46.889 5.2e-08*** 1233 175.23 2.12e-15*** 0.0 5.85e-07 0.999 

Residuals 0.006   7   16.7   
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’; MS: Mean Squares 

 
Table 4: Canonical analysis of response surface based on Cd, Zn, and Pb 

Response RMSE R2adj Stationary point Mean Predicted value 
Cd 0.19 0.26 minimum 1.07 0.89 
Zn 16.62 0.83 maximum 65.09 123.24 
Pb 12.80 0.71 maximum 27.37 60.27 

 

The obtained results suggested that the response 
surface predictions were in good agreement with the 
experimental results. The exception in here was 
when Cd was the output, the inputs were not 
satisfying to explain the response surface, but the 
predictive value was still in the interval of guideline. 
Thus, the experimental designs were reliable and 
effective in determining the optimum conditions. 

3D plots of response surfaces  
Fig. 1 indicates the three dimensional surfaces of 

the response for Cd, Zn, and Pb contamination. In Fig. 
1, the maximum predicted Cd contamination was 
located at the corresponding levels of (𝑋1, 𝑋2) =
(±1, ±1). The minimum of the response was located 
at the levels of (𝑋1, 𝑋2) = (0, 0). The minimum 
predicted value of Zn contamination was located at 
the corresponding levels of (𝑋1, 𝑋2) = (−1, +1) and 

the maximum value of the response was located at 
the levels of (𝑋1, 𝑋2) = (0, 0). The response surface 
showed to be a mount shaped. The maximum 
predicted Pb is located at the point (𝑋1, 𝑋2) =
(+1, 0). The plot shows that there is a saddle point in 
the surface. 

3.2. MARS modeling results 

The evaluated final MARS model and its 
estimated coefficients were given for each heavy 
metal below. The models were the linear 
combinations of five, six, and three BFs, respectively 
which used two original variables (number of 
tramways, number of cars). In Cd concentration 
MARS model, five BFs were found to be statistically 
important. The effects 𝑋1and 𝑋2 appeared both 
individually and interactively (i.e. their product with 
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each other). For instance, the BFs max (0, 𝑋2-0) and 
max (0, 𝑋1 +1) represented the single effects on Cd 

concentration. 

 
Fig. 1: Response surface plots for Cd, Zn, and Pb contamination 

 

The single effects whose impact was positive 
(with coefficients of 0.529, 0.753, and 0.299) on the 
response were sensitive to the knot values 0 and (-
1). The two BFs, max (0, 𝑋1 +1)×max (0,0-𝑋2) and 
max(0, 𝑋1 +1)×max(0, 𝑋2 -0) denoted that the impact 
of 𝑋1was emerged through the interaction with 𝑋2. It 
was also worth to mention that the impact of the 
contribution from the two effects was negative (with 
coefficients of -0.541 and -0.301). Hence it can be 
said that the effect 𝑋1 played a role in the Cd 
concentration when it was larger than the knot (-1) 
while 𝑋2<0 and 𝑋2>0. 

  
 𝑦Cd  =  0.629 + 0.529 × 𝑚𝑎𝑥(0,  𝑋2 − 0) + 0.753 ×
𝑚𝑎𝑥(0,0 −  𝑋2) − 0.541 × 𝑚𝑎𝑥(0,  𝑋1  + 1) × 𝑚𝑎𝑥(0,0 −
 𝑋2) +  0.299 × 𝑚𝑎𝑥(0,  𝑋1  + 1) − 0.301 × 𝑚𝑎𝑥(0,  𝑋1  +
1) × 𝑚𝑎𝑥(0,  𝑋2  − 0)  

Having the similar interpretation for Zn and Pb 
concentration MARS models, it appeared the single 
effects and the contributions from two effects were 
significant. Hence the models were composed of six 
and three BFs, respectively. 

  
𝑦Zn =  131.560 − 77.488 × 𝑚𝑎𝑥(0,  𝑋1  − 0) − 89.738 ×
𝑚𝑎𝑥(0,0 −  𝑋1) − 84.026 × 𝑚𝑎𝑥(0,  𝑋2  − 0) +  92.449 ×
𝑚𝑎𝑥(0,  𝑋1  − 0) × 𝑚𝑎𝑥(0,  𝑋2  − 0) + 43.403 × 𝑚𝑎𝑥(0,0 −
 𝑋1) × 𝑚𝑎𝑥(0,  𝑋2  − 0) +  19.668 × 𝑚𝑎𝑥(0,  𝑋1  − 0) ×
𝑚𝑎𝑥(0,0 −  𝑋2)  
𝑦Ph =  9.844 + 34.658 × 𝑚𝑎𝑥(0,  𝑋1  + 1) − 30.640 ×
𝑚𝑎𝑥(0,  𝑋2  − 0) × 𝑚𝑎𝑥(0,  𝑋1  + 1)  −  20.747 ×
𝑚𝑎𝑥(0,0 −  𝑋2) × 𝑚𝑎𝑥(0,  𝑋1  + 1)  

 
To further access the capability of MARS and 

RSM, some of the important statistics were given in 
Table 5.  

 
Table 5: Comparison of the MARS and RSM models 

Method MARS RSM 
Heavy Metal Cd Zn Pb Cd Zn Pb 

RSS 0.3801 369.5410 3727.8580 1.5240 10778 6391.6818 
MSE 0.0097 9.7247 90.92337 0.0390 276.359 163.8892 

F 40.3656 1243.6083 78.6146 4.2100 498.6900 115.3000 
GCV 0.0506 41.5733 211.8050 - - - 

RMSE (SE) 0.0987 3.1184 9.5353 0.1976 16.6242 12.8019 
𝑅𝑎𝑑𝑗

2  82% 99% 84% 26% 83% 71% 

RSS: Residual Sum of Squares; MSE: Mean Square Error; SE: Standard Error of Regression 

 

MARS uses 𝑅𝑎𝑑𝑗
2  and GCV criteria to assess the 

goodness of a fit. For the three concentration models, 
the corresponding 𝑅𝑎𝑑𝑗

2  obtained by MARS are 82%, 

99%, 84%, respectively. By considering 45 
observations, overall 𝑅𝑎𝑑𝑗

2  scores indicate good fit 

than the scores 𝑅𝑎𝑑𝑗
2  of 26%, 83%, and 71% obtained 

by RSM models, respectively. MARS also computed 
GCV scores of the corresponding models as 0.051, 
41.573, and 211.805, respectively. Table 5 compares 
also the accuracy of MARS and RMS models in 
estimating the concentration of Cd, Zn, and Pb. The 
MARS models indicate better than RSM models in 
terms of RMS accuracy. It was apparent that RMSE 
scores were decreased by MARS models.  

MARS allows displaying the predicted response 
as a function of the others (Salford Systems, 2010).  

In Fig. 2, the interactions of the input variables 
were presented for each concentration model. It is 
clear that given the 𝑋1 and 𝑋2 levels of (-1), the 
largest contribution to Cd concentration have been 
obtained. That is, the number of tramways and the 

number of cars both affected the contamination in 
soil in terms of Cd concentration although there 
were caused less traffic at the time. Secondly, it can 
be concluded that the  𝑋1 of level (0) and the 𝑋2 
levels of (-1, 0) increased the contamination of the 
Zn concentration in soil. In other words, being 
moderate of the number of tramways and being 
increased from medium to high of the number of 
cars caused the largest contribution to Zn 
concentration. Finally, the largest contribution to Pb 
contamination was obtained when the number of 
tramways at highest level (+1) whereas the number 
of cars was at medium level (0). This result might be 
considered that the reason of the contamination in 
soil in terms of Pb was mostly from the reason of the 
number of tramways. 

3.3. Relative importance 

It can be seen from Table 6 that MARS possesses 
more information regarding to the important 
variables which RSM could not easily produce.  
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MARS explicitly indicates the important variables 
and ignores the unneeded ones. The most important 
variables are the ones that have the largest impact 
on the goodness-of-fit or GCV score (Steinberg and 
Colla, 1999). The relative importance of the variables 

for each concentration model was summarized in the 
Table 6. As can be seen, both variables car and 
tramway have great contribution to Cd, Zn, and Pb 
MARS models. 

 

 
Fig. 2: Cd, Zn, and Pb concentration MARS models 

 
Table 6: Relative variable importance for Cd, Zn, and Pb 

(%) 
 Cd Zn Pb 

Tramway 100.00 100.00 100.00 
Car 91.03 81.83 84.61 

4. Conclusions  

This paper used a nonparametric method MARS 
and RSM based on a polynomial experimental design 
to approximate the concentration of some heavy 
metals in soil. Our objective was to develop response 
surface models to characterize the concentration of 
Cd, Zn, and Pb in soil and compare them with MARS. 
This method was used to explore the relationship by 
splitting the variables over its region and transform 
the original ones to new variables. The MARS 
algorithm was run to illustrate the concentration 
models combined with a group of spline base inputs.  

The RSM based on a 32 factorial design was used 
first and then MARS was applied to the same 
datasets. The results of the analysis of variance on 
metal contaminations were given in tables for Cd, Zn, 
and Pb, respectively. The results of MARS showed 
that it extracted more information as RSM stood 
improper when there were a few numbers of runs in 
the experiment. MARS proposed extra information 
using the distribution of the design points. The MARS 
contamination models showed a moderate 
improvement in goodness of fit than the second 
order response surface models in terms of RMSE and 
the adjusted 𝑅𝑎𝑑𝑗

2 . 

It was also noticeable that although the MARS 
models evaluated seemed more complex than the 
second order response surface models, the number 
of the covariates was still reasonable as compared to 
the number of observations. The successful 
applications of MARS in these three problems 
indicate that MARS is computationally efficient and 
easy to interpret. It can also estimate the 
contributions of the input variables and enable the 
scientists have an insight and understanding of the 
significant variables occur in the data. 
 

5. Discussion 

Our conclusions provide a better understanding 
of the response surfaces that are obtained by MARS. 
Based on the early studies of Kan and Yazici (2009a, 
2009b) on modeling the response surfaces by MARS, 
our approximation is still adaptable to the first order 
and second order response surface models so that 
the conclusion has not been only referenced to one 
very specialized data set given in the frame of this 
paper but others as well. Since in low dimensions, 
the set of the design points were not proper for 
modeling, the weakness of RSM can be removed by 
using MARS. 
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